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Abstract

Imputation is a critical preprocessing step for
handling missing data, yet conventional imputa-
tion methods can introduce or amplify unfairness
across protected groups. We theoretically show
that imputation fairness directly impacts down-
stream fairness in terms of accuracy parity at in-
ference time, when the predictive model is trained
solely on fully observed data. Motivated by this
insight, we introduce a novel adversarial frame-
work called Fair Adversarial IMputation (FAIM)
that can be integrated with any gradient-based
imputation model. Our method incorporates a
tunable fairness-accuracy trade-off parameter, al-
lowing practitioners to balance imputation per-
formance and imputation fairness. We empiri-
cally validate FAIM on two real-world datasets,
showing significant improvements in group-wise
imputation fairness. Furthermore, we assess the
downstream fairness impact on a synthetic dataset
derived from a real-world dataset, confirming that
fairer imputations lead to fairer predictive out-
comes at inference time.

1 Introduction

Missing values are common in real-world datasets and can
occur for many reasons. Some arise from random events
such as sensor errors or data corruption (Song & Szafir,
2018; Wei & Link, 2019), while others are systematically
linked to sociodemographic factors like age, race, sex, ed-
ucation, or income (Little & Rubin, 2019; Cheema, 2014,
Jeanselme et al., 2022; Fernando et al., 2021). Additional
causes include privacy concerns (Tourangeau & Yan, 2007),
accessibility issues (Zhou et al., 2017), language barri-
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Figure 1: FAIM architecture. The fairness discriminator
frp learns to predict the protected attribute from imputation
errors. The imputation function fiy, is optimized with a
combined reconstruction and adversarial loss to minimize
group-identifiable signals and promote fairer imputations.

ers (Karras & Kornfeld, 2020), and question sensitivity or
social desirability bias (Tourangeau & Yan, 2007).

Most machine learning (ML) pipelines are not inherently
equipped to handle missing data, so missing values are typi-
cally addressed during preprocessing, either by dropping in-
complete records or imputing missing entries with plausible
values before training a model. However, when missingness
patterns differ across demographic groups, these prepro-
cessing decisions can significantly influence both the accu-
racy and fairness of downstream models (Newman, 2014;
Martinez-Plumed et al., 2019; Feng et al., 2023). Despite
the prevalence of missing data in real-world settings, the fair
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ML literature often assumes complete datasets (Dwork et al.,
2012; Calmon et al., 2017; Zafar et al., 2019), neglecting
how disparities in imputation performance can propagate
group-level bias. As a result, fair treatment of missing data
remains a critical but underexplored issue in responsible
ML.

In this paper, we shift the focus to a fundamental and over-
looked question: How can we impute missing values fairly,
ensuring comparable performance across protected groups?
We address this question by introducing FAIM, a novel
adversarial training framework that encourages group-
invariant imputation quality. FAIM draws inspiration from
the adversarial debiasing framework of Zhang et al. (2018),
which promotes fairness by training a predictor alongside
an adversary that attempts to recover the protected attribute.
In our setup, the imputation function plays the role of the
predictor, while the adversary learns to infer the protected
attribute based on the imputation errors. This minimax in-
teraction drives the imputation model to equalize its perfor-
mance across groups. Our framework is broadly applicable:
it supports any gradient-based imputation model that recon-
structs the full data vector and handles both categorical and
numerical features. Notably, it does not require access to
the protected attribute at test time, making it practical for
privacy-sensitive applications. A tunable hyperparameter
controls the trade-off between imputation fairness and ac-
curacy. We implement FAIM using a simple multi-layer
perceptron (MLP) imputer and demonstrate its effectiveness
in improving imputation fairness on two real-world datasets.

Our work is most closely related to FIGAN, introduced
by Zhang & Long (2022), whose definition of imputation
fairness aligns with ours and focuses on minimizing
performance disparities across protected groups. FIGAN
is a Generative Adversarial Network (GAN)-based (Good-
fellow et al., 2014) imputation method augmented with
a regularization term to encourage group-level parity.
However, it assumes all features are numerical, which limits
its applicability to datasets with categorical variables. It
also requires access to the protected attribute at inference
time, which may not be feasible. Most importantly, their
work does not explore the relationship between imputation
fairness and downstream model fairness. This is a key gap
that our work addresses.

We consider a realistic deployment scenario in which a
predictive model is trained on fully observed data, but
inference time inputs may contain missing values that
require imputation. We provide both theoretical and
empirical evidence, using a synthetic dataset derived from
the real-world Law School dataset (Wightman, 1998), that
improving imputation fairness, that is, reducing group-level
disparities in imputation quality, can directly improve
downstream fairness, as measured by accuracy parity. In a

simplified linear setting, we formally prove that imputation
unfairness leads to accuracy disparities in the downstream
model at inference time.

To summarize, our contributions in this work are fourfold:
(1) we propose FAIM, the first adversarially trained frame-
work for fair imputation; (2) we demonstrate a smooth and
controllable trade-off between imputation fairness and im-
putation accuracy through a tunable parameter; (3) we the-
oretically establish, under a linear model, and empirically
validate using both linear and non-linear classifiers, the
connection between imputation fairness and downstream
fairness at inference time under a complete-case training
setup; and (4) we design FAIM to handle both numerical and
categorical features without requiring the protected attribute
at inference time.

2 Related Works

Based on Rubin’s missingness framework (Rubin, 1976),
missing data can be categorized into three cases: (1) Miss-
ing Completely at Random (MCAR) occurs when the miss-
ingness is entirely independent of both observed and un-
observed variables. For example, data can be lost due to
random sensor errors. (2) Missing at Random (MAR) refers
to cases where the missingness depends only on observed
variables. An example of MAR is when younger individuals
are more likely to withhold their salary, given that age is
an observed variable. (3) Missing Not at Random (MNAR)
occurs when the missingness depends on unobserved vari-
ables, including the missing values themselves. For instance,
individuals in the highest or lowest income brackets may
choose not to disclose their income, and other observed
data cannot fully explain this behavior.! In this work, we
provide empirical results on all three missing mechanisms
with different missing rates.

The simplest and commonly used method for handling miss-
ing values in ML pipelines is deletion, where rows con-
taining any missing values are discarded. However, it is
strongly advised in the missing value literature to use all the
available data, as even discarding as little as 2-3% of data
with missing values can significantly decrease the model
performance (Newman, 2014). Furthermore, Martinez-
Plumed et al. (2019) empirically show that keeping the
rows with missing values often improves the fairness of the
predictive model, as missingness is often not random and
is systematically related to the protected attribute. While
certain ML models, such as decision trees with surrogate
splits (Breiman et al., 2017), or models that treat missing-
ness as an informative attribute (Twala et al., 2008; Jeong
et al., 2022), can accommodate missing values directly, the
majority of models require complete data. As a result, im-

'The formal definition of MCAR, MAR, and MNAR can be
found in the Supplementary Materials.
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puting missing values by replacing them with reasonable
approximations has become a critical preprocessing step in
most ML workflows. Notably, the UCI Machine Learning
Repository (Asuncion et al., 2007), one of the most widely
used sources of benchmark datasets, includes numerous
datasets in which missing values have already been imputed
prior to public release.

Although retaining incomplete rows through imputation can
help improve fairness (Martinez-Plumed et al., 2019), recent
theoretical work suggests that the widely used “impute-then-
classify” paradigm can, in fact, degrade group fairness (Feng
et al., 2023). Supporting this, Nezami et al. (2024) empiri-
cally demonstrate that using imputed data to train predictive
models for college student success increases accuracy but
often exacerbates unfairness, particularly for Black and His-
panic students, compared to models trained on data where
missing values have been removed. Motivated by these
findings and by the fact that, in many real-world scenar-
ios, classifiers are trained on fully observed data, this work
focuses on the downstream effects of imputation fairness.
Specifically, we study how the fairness of imputations made
at inference time impacts the fairness of models trained on
complete cases.

Recent studies have highlighted the social harms that can
result from biased imputation methods (Caton et al., 2022;
Fernando et al., 2021; Wang & Singh, 2021; Zhang & Long,
2021; Khan et al., 2024). For example, Zhang & Long
(2021) define imputation fairness as the disparity in imputa-
tion accuracy between privileged and unprivileged groups
and find that unfairness increases with greater missingness
disparity, overall missingness, and class imbalance. We
adopt a similar fairness definition in our work. The work
most closely related to ours is that of Zhang & Long (2022),
who introduce the concept of imputation fairness risk and
provide theoretical bounds under the assumption of correctly
specified imputation models. They further present a GAN-
based (Goodfellow et al., 2014) fairness-aware imputation
approach, incorporating a regularization term to improve
group-level fairness. While this work offers a promising
direction, it leaves open the question of how such fairness
improvements in imputation translate to fairness in down-
stream predictive models. This concern is echoed by Shad-
bahr et al. (2023) high-performing classifiers can still arise
from poorly imputed data, hypothesizing that the imputed
datapoints can function as data augmentation or regulariza-
tion. This raises a key question: Does improving imputation
fairness necessarily lead to fairer downstream predictions?
Addressing this from an empirical standpoint, Khan et al.
(2024) introduce a comprehensive evaluation suite for re-
sponsible imputation. Their framework assesses methods
based on imputation quality, fairness, and the predictive per-
formance, fairness, and stability of models trained and tested
on the imputed data.Their results suggest no consistent cor-

relation between imputation fairness and downstream model
fairness.

In contrast to these prior works, our study focuses specif-
ically on inference-time fairness for models trained on
complete-case data, and we provide a theoretical proof of
a direct link between imputation fairness and downstream
fairness under this setting. Moreover, unlike the approach
of Zhang & Long (2022), our framework does not require
access to the protected attribute at inference time, making it
more practical in privacy-sensitive applications.

Our work is inspired by the adversarial debiasing frame-
work proposed by Zhang et al. (2018), which mitigates
bias by jointly training a predictor and an adversary in a
minimax setup. In their method, the predictor is trained
to make accurate predictions, while the adversary attempts
to infer the protected attribute from the predictor’s output
layer. The predictor is penalized when the adversary suc-
ceeds, thus encouraging representations that are predictive
of the target label but invariant to the sensitive attribute.
This adversarial objective can be adapted to promote vari-
ous group fairness metrics, including demographic parity,
equalized odds, and equal opportunity’, depending on how
the adversary is defined. Our method builds on this idea
in the context of imputation: we treat the imputer as the
predictor and use an adversary that predicts the protected
attribute given the error made by the imputer on the ob-
served datapoints, thereby encouraging equal performance
over different protected groups.

3 Problem Definition and Theoretical Results

In this section, we formally define the imputation process
and present a theoretical analysis of how imputation fairness
influences downstream fairness in a linear classifier trained
on complete-case data.

3.1 Preliminaries

Missing Value Imputation. Let X = (X3,...,X,)bea
fully observed d-dimensional random variable taking place
in the space of X = X} x --- x &;. X is associated with
a sensitive attribute A and a target label Y. Without loss
of generality, we assume that the sensitive attribute and the
target label are binary, i.e., A,Y € {0,1}.

We define a new space as X = 221 X e X /fd, where each
component space is given by X; = X; U {na} for j €
{1,...,d}. Here, na represents a missing entry. Let X =
(X1,...,X4) denote the partly observed random variable
taking values in X. Suppose that the random variable M =
(My, ..., My) € {0,1}%is a binary indicator vector, where

2Although demographic parity, equalized odds, and equal op-
portunity fairness measures are not directly used in this paper, their
formal definitions can be found in the Supplementary Materials.



FAIM: Fair Imputation with Adversarial Training for Mitigating Bias in Missing Data

M; = 1 indicates that X; is observed and M; = 0 indicates

that X; is missing (i.., na). Finally, we define the missing
dataset D as D = {(X M® A® y@yn

The imputation function fimp : X x {0,1}4 — X takes X
and a corresponding binary mask M as inputs and outputs
the fully imputed vector X. Now, X, X € X, are defined

as follows: ¢ _ fimp(Xa M) (1)
X=MoX+(1-M)oX, )

where © denotes element-wise multiplication. The random
variable X denotes the fully imputed data vector, where
all entries, including the observed ones, are reconstructed
by the imputation function. This assumption is justified,
as many gradient-based imputers reconstruct the full data
vector(Yoon et al., 2018; Gondara & Wang, 2018; Mattei
& Frellsen, 2019; Kotelnikov et al., 2023). X represents
the completed data vector where only the missing entries
are replaced with their corresponding values in X, and the
observed entries remain unchanged. In the remainder of this
paper, lowercase letters are used to denote realizations of
random variables.

Imputation Quality To evaluate the performance of the
imputation method, we use the well-established metrics
Root Mean Squared Error (RMSE) for numerical features
and Accuracy Error (AR) for categorical features. Addi-
tionally, following the approach of (Miao et al., 2022), we
use Average Root Mean Squared Error (ARMSE), which
combines these two metrics. Lower ARMSE values indicate
better imputation quality. We define these metrics formally
as follows:

; } N 2
A S -mP) - (20 - )
RMSE(XJ',X.j) = " @ (3)
E:i:1(1 —m; )

S (1= m) 1 [of 7 27

AR(xj,%.;) = - )
o S (1—m{?)
ARMSE(X,X) = é (Z AR(xj, %)
JEFc
+ > RMSE(x.j,xj)) 5)
JE€EFn

where F,. and F,, denote the categorical and numerical
feature sets, X ; = (xg-l), . ,a:;n)) is the vector of values
for feature j, and I[-] is the indicator function. Smaller
values of all the metrics introduced suggest better imputation

performance.
Imputation Fairness To assess the fairness of an imputa-

tion method, we introduce ARMSE parity metric formally
defined as follows:

ARMSE parity = |[ARMSEa—o(X, X)

—ARMSEa-(X,X) (6)

This metric intuitively captures the performance disparity
of an imputation model across protected groups, where a
perfectly fair imputation method would yield an ARMSE
parity of 0.

3.2 Theoretical Results

In the theorem below, we prove that when the downstream
classifier relies on an approximately linear scoring function
(e.g., logistic regression), any accuracy disparity in the im-
putation step propagates directly into an accuracy disparity
in the downstream task.

Theorem 3.1. Let h : R — R be a downstream classifier’s
score function. Assume that h satisfies the following:

E[|[(X) = Y} ~ o(1),

L-fx—x|—e<|[nx) —hx)| < L-[x-x[ +e
Let two imputation algorithms f1 and fo have different
ARMSE parities, i.e., without loss of generality,

E[llX — AX)|) = a E[IX = £X)I], (a>1).

Then, the downstream accuracy parity follows:

[Ellh o f1(X) = Y[[|S = 0] —E[|ho f1(X) - YIS = 1]|
> a- [E[|ho f2(X) - YIS = 0]
~E[llho f2(X) = YIS = 1]| — o(1).

The proof of this theorem is provided in Appendix D

4 FAIM Framework

We propose FAIM (Fair Adversarial IMputation), a novel
framework that leverages adversarial training to reduce dis-
parities in imputation performance across protected groups.
FAIM incorporates a fairness discriminator trained to predict
the protected attribute from imputation errors, encouraging
group-invariant imputation quality through an adversarial
objective. This approach is inspired by the Adversarial Debi-
asing technique introduced by Zhang et al. (2018), in which
a classifier is trained alongside an adversary that attempts to
infer the sensitive attribute from the model’s predictions. By
jointly optimizing the predictor and adversary in a minimax
fashion, their method encourages fairness under metrics
such as statistical parity and equalized odds. FAIM extends
this idea to the imputation setting, promoting fair treatment
during data preprocessing.

Figure 1, illustrates the FAIM framework, which comprises
of two neural networks: the imputation function fiy, and the
fairness discriminator fgp. fimp, Which can be any gradient-
based imputation model, reconstructs the missing data ma-
trix X as described in Section 3.1.
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Algorithm 1 Pseudo-code of FAIM

Input: D = {(X, m® a())} consisting of incomplete
data vectors X, missingness masks m® and protected
attributes a(?)
Initialize: Parameters of fin, and frp
for each training step do
(1) Fairness discriminator optimization
Draw krp samples from the dataset {(%), m®) a(j))}f:')1
fOl‘j: 1,...,]4;1:])(10
%) fimp(fc(j),m(j))
kr(rfe)an — GroupwiseMeanImpute(f((j), m(j))
Xgr) — ‘i(j) - ﬁggan
end for
Update frp using Stochastic Gradient Descent (SGD)

krp

Vip — Y Len(aY, fen(xi)))
=1

(2) Imputation function optimization
Draw Kimp samples from the dataset {(%x), m) a())}
forj=1,..., kipp do
%) fimp(fc(j),m(j))
end for
Update fimp using SGD

Kimp
Jj=

kimp

vimp Z £recon (i(]) ) i(j)) + ’Y‘Cadv (fFD (Xéfr) ))

j=1

end for

4.1 Fairness Discriminator

Similar to the Adversarial Debiasing framework, we employ
a fairness discriminator fgp as an adversary. However,
unlike typical classifiers where the predictor’s output is a
logits vector, our predictor outputs a fully imputed data
matrix. Formally, the fairness discriminator is a function
frp : R4 — [0,1]. The input to the frp network is then
calculated as the absolute error of the imputation function,
formally denoted as

Xerr = |Xmean - X|, (7)

where X nean represents the group-wise mean imputed data.

Why do we use Xme,m in (7)? When constructing the input
to the fairness discriminator frp, a key challenge arises:
missing values are not present in the input, and their pat-
terns are often correlated with the protected attribute. If
we replace these missing positions in the error vector with
constant values (e.g., zeros), it can lead the fairness discrim-
inator to exploit these disparities in the missingness patterns
rather than the actual imputation errors, undermining its

purpose. To mitigate this issue, we use group-wise mean
imputation as a simple yet effective strategy to fill missing
entries. This approach reduces the risk of leaking protected
attribute information through missingness structure while
providing a stable reference for computing meaningful im-
putation errors. Furthermore, using absolute error as input
guides the model to equalize reconstruction quality across
groups. Since absolute error correlates with RMSE and ac-
curacy, reducing its disparity promotes imputation fairness
measured by ARMSE parity.

The fairness discriminator is then trained on these error
vectors to predict the protected attribute:

A = fFD(Xerr) (8)
Lrp(A,A) = Exm\Azl[lOg(A)]
+ Ex,a=ollog(1—A)] 9

Intuitively, the fairness discriminator is trained to maximize
the probability of correctly predicting A based on the abso-
lute error made by the imputation function.

4.2 Fair Imputer Objective

The imputation function fiy, is designed to predict miss-
ing values both accurately and fairly. To achieve this, it
is trained using a combined loss consisting of a standard
reconstruction loss, denoted by Lecon, and an adversarial
loss, denoted by L,4y. The reconstruction 1oss L econ ensures
the accuracy of predicting missing values, typically using
cross-entropy for categorical features and mean squared
error ([2-loss) for numerical features. Details on the spe-
cific reconstruction loss as well as the imputation function
used in our experiments are provided in Section 5. The
adversarial loss L4y is defined as:

Laav(A) = (A -0.5)2, (10)

with A denoting the output of the fairness discriminator
and taking values in [0, 1]. This {2-loss penalizes confi-
dent predictions by the fairness discriminator. It encourages
Ato stay close to 0.5, making the discriminator’s predic-
tion ambiguous for all groups. As a result, the imputation
function learns to produce group-invariant errors, leading
to improved fairness. While alternative loss functions can
achieve a similar effect, we find the formulation in (10) to
be the most stable and effective in practice.

Finally, the overall loss used to train the imputer is given by
»Cimp = Crecon(xv X) + ’Y’Cadv(A)a (1 1)

where + is a tunable hyperparameter that controls the trade-
off between imputation accuracy and fairness.

The training procedure for the FAIM framework, outlined in
Algorithm 1, follows the adversarial training paradigm intro-
duced by (Goodfellow et al., 2014), alternating between two
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fully connected neural networks: the imputation model finp
and the fairness discriminator fgp. At each training step,
frp is first updated to predict the protected attribute from the
imputation error vector, computed as the absolute difference
between the output of fi, and a group-wise mean-imputed
baseline. Then, keeping frp fixed, we update fiy, using a
combined loss that balances reconstruction accuracy and ad-
versarial fairness, with the trade-off governed by the tunable
hyperparameter ~y.

S Experiments and Evaluations

In this section, we evaluate the imputation and down-
stream fairness performance of our proposed method and its
fairness-enhanced variant in comparison to several widely
used baselines across multiple datasets.

MLP Imputer. In our experiments, both the fin, and frp
networks are implemented as MLPs with three hidden lay-
ers, each of dimension 16, using ReLLU as the activation
function. The weights are initialized using Xavier initializa-
tion (Glorot & Bengio, 2010). Since neural networks cannot
inherently process missing values, we replace the missing
entries in X with randomly generated noise values that are
independent of all other features before feeding the data into
the network. Formally, the input to the imputation function
is defined as:

Z € R, Z; ~ 14(0,0.01) independently fori = 1,....d
Xnoise:MQX‘i‘(l—M)@Z (12)

where M is a binary mask indicating observed entries, and
the noise vector Z is sampled independently for each dimen-
sion. The noise injection strategy follows the implementa-
tion of GAIN (Yoon et al., 2018). The imputation function
then receives both the noise-injected input and the mask:
fimp (inoisea m) .

To enable the imputation function to handle both numerical
and categorical features, we define the reconstruction loss
Lecon as follows:

d
Crecon(xa X/) = Z miLrecon(xia (E;), (13)
i=1

where

Lrecon(xia x;) = {

a x (x) —x;)?, if 2; is continuous,

B x (—x;log(x})), if x; is binary.
Here, o and 3 are tunable hyperparameters that control the
relative importance of imputing continuous versus binary
(one-hot encoded categorical) features. The reconstruction
loss is only computed on the observed points.

Finally, both networks are alternatively updated using the
Adam optimizer and a fixed learning rate.

Baselines. To ensure a comprehensive evaluation, we
compare FAIM against six widely used imputation base-
lines spanning diverse methodological categories. These
baselines include: (1) statistical methods: mean and
group-wise mean; (2) machine learning-based meth-
ods: MICE(Van Buuren & Groothuis-Oudshoorn, 2011),
MissForest(Stekhoven & Biihlmann, 2012), and KNN
Imputer(Troyanskaya et al., 2001); (3) matrix completion:
Soft Impute(Mazumder et al., 2010); and (4) generative
deep learning: GAIN (Yoon et al., 2018).? Implementation
details of our baselines as well as hyperparameter tuning for
our method are provided in Appendix C.

Datasets. We assess imputation fairness on two real-world
datasets: the UCI Adult dataset (Dua & Graff, 2019) and
the ACSIncome (Folk Income) dataset (Ding et al., 2021).
To evaluate the effect of imputation fairness on downstream
inference, we further experiment with synthetic data based
on the Law School dataset (Wightman, 1998). Additional
dataset details are provided in Appendix B, and the details
of the synthetic data generation are provided in Section 5.2.

Data Missingness Patterns. In our experiments, we start
with complete datasets and inject missingness to evaluate
imputation accuracy. Following Khan et al. (2024), we in-
troduce socially meaningful missing patterns by selecting
the 3—4 features with the highest Kullback—Leibler Diver-
gence (KLD) between protected groups. This allows us to
evaluate FAIM under conditions where group-wise feature
distributions differ most.

We evaluate three overall missingness rates: 20%, 30%, and
40%, applied consistently across all missingness mecha-
nisms. For MCAR, missing values are injected uniformly
at random into the selected features. For MAR, we design
missing patterns such that the missing probability depends
only on the sensitive attribute, simulating systemic bias
by assigning higher missingness rates to the disadvantaged
group (i.e., females in Adult, non-White individuals in Folk
Income, and our Law School-based synthetic dataset). For
MNAR, we condition the missing probability only on the
feature values themselves; for example, in the Adult dataset,
individuals with a non-married marital status are more likely
to withhold that information, resulting in a higher missing-
ness probability for such values. Table 2 details the selected
features and injection conditions for the Adult dataset. Fur-
ther details for other datasets are provided in Appendix B.1.

5.1 Improved Imputation Fairness

Figure 2 shows imputation fairness improvements on the
Adult dataset under MCAR with 30% missingness. The
MLPImputer serves as our baseline, using a simple MLP

3We exclude FIGAN as a baseline due to the unavailability of
code and the lack of overlap in datasets.
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Figure 2: FAIM substantially reduces imputation unfairness, lowering ARMSE parity from approximately 0.13 to 0.03 with
a modest impact on RMSE and F1 score. Results are shown on the Adult dataset under MCAR with 30% missingness.
FAIM points are annotated with ~ values, which control the fairness-performance trade-off.

Table 1: Missingness configurations for the Adult dataset at 30% missing rate across different mechanisms. Rare occupations
are defined as those with a population frequency of less than 10%.

Mechanism Missing Column Conditional Column (/) Pr(m = 0 | Lis underprivileged) Pr(m = 0 | ILis privileged)
MCAR Relationship, Marital Status, Occu-  N/A 0.3 0.3
pation, Hours per Week
MAR Relationship, Marital Status, Occu-  sex 0.2 (female) 0.1 (male)
pation, Hours per Week
MNAR Relationship Relationship 0.25 (not married) 0.05 (married)
Marital Status Marital Status 0.25 (not married) 0.05 (married)
Occupation Occupation 0.25 (rare occupations) 0.25 (common occupations)
Hours per Week Hours per Week 0.18 (< 40) 0.12 (> 40)

imputation function without any fairness regularization.
FAIM starts with an ARMSE parity around 0.13, similar to
that of MissForest and KNN, and reduces it to 0.03, sig-
nificantly outperforming these baselines. This fairness gain
comes with a modest increase in RMSE and a more notice-
able drop in F1 score. For ~y values up to 2, FAIM maintains
imputation performance comparable to MissForest and
group-wise mean imputation, while offering substan-
tially better fairness. Furthermore, even at the highest ~
value, FAIM’s imputation performance remains within the
range of the other baselines.

In Figure 3, we show results on the Folk Income dataset
under MAR with 30% missingness. Compared to the Adult
dataset, the baseline ARMSE parity values are generally
lower. Our MLP Imputer starts with an ARMSE parity of
about 0.038, close to values observed for KNN and GAIN.
FAIM improves this to 0.012 at the highest v value, out-
performing all baselines in terms of fairness. It is worth
noting that this improvement comes at minimal cost to the
F1 score for the categorical variables and an improvement
in the RMSE for the numerical variables. At the highest v
level, our method outperforms all other baselines in terms
of imputation fairness while having comparable imputation
performance to the other baselines. Soft Impute results

are omitted due to high variance that obscure trends.

5.2 Improved Downstream Fairness

To study the impact of imputation fairness on the down-
stream classification fairness when the model is trained on
fully observed data, we construct a synthetic dataset derived
from the Law School dataset. This dataset contains both
numerical and ordinal categorical variables. We select two
numerical features (LSAT and Decilelb) and one categor-
ical feature (Family Income) that exhibit high group-wise
distributional divergence (measured by KLD). The protected
attribute, race, is retained as in the original dataset. To am-
plify group disparities, we modify the LSAT distribution to
increase its divergence between racial groups. Specifically,
we center the LSAT scores for the advantaged group by sub-
tracting their group mean, thereby shifting their distribution
and increasing the KLD from the disadvantaged group. We
then generate a target score as a linear combination of the
three selected features, assigning LSAT twice the weight of
the others. Finally, we binarize the target to simulate group
imbalance by setting separate thresholds for each group
such that 80% of White individuals and 60% of non-White
individuals receive a positive label.
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Folk Income Dataset with MAR Missingness (30%)
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Figure 3: FAIM reduces ARMSE parity on the Folk Income dataset from approximately 0.038 to 0.017, with minimal
impact on imputation F1 score and a slight improvement in RMSE. Results are shown under the MAR setting with 30%

missingness. FAIM points are annotated with  values.

Law School-Based Synthetic Dataset with MAR Missingness (30%)
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Figure 4: FAIM reduces ARMSE parity from around 0.12 to 0.02 with minimal impact on imputation RMSE and F1 score,
and improves downstream accuracy parity from 0.17 to 0.09, with a slight drop in downstream F1 from 0.82 to 0.79. Results
are shown for the Law School-based synthetic dataset under MAR with 30% missingness. FAIM points are labeled with -y

values.

We split the Law School-based synthetic dataset in half for
training and testing. We train logistic regression and ran-
dom forest models on the complete training set. During
the test time, missing values are then introduced (details of
missing patterns can be found in Table 4). While our theoret-
ical analysis focuses on linear models, our empirical results
show that downstream fairness also improves when using
a non-linear model such as random forest, demonstrating
the broader applicability of our approach. The correspond-
ing results using a random forest classifier are included in
Appendix F.

Figure 4 shows imputation and downstream fairness results
on the Law School-based synthetic dataset under 30% MAR
missingness. We vary v and evaluate downstream fairness
using accuracy parity from a logistic regression model. As y
increases, FAIM consistently reduces ARMSE parity, with
minimal change in imputation F1 and a modest increase in
RMSE. At higher  values, FAIM achieves the best fairness
while maintaining competitive imputation performance. The
group-wise mean imputer also performs well across

both metrics. In terms of downstream performance, the F1
score for our baseline, MLP Imputer, is initially close to
GAINand MissForest, starting around 0.83. It gradually
decreases to 0.79 as fairness improves, with accuracy parity
improving from about 0.175 to 0.09.

It is important to note that selecting an appropriate y value
is crucial for balancing imputation fairness and downstream
fairness with overall performance. Practitioners should care-
fully tune this parameter to ensure desirable outcomes across
both fairness and accuracy.

6 Conclusion and Future Work

We present FAIM, a novel adversarial framework for fair
imputation that promotes group-invariant performance by
training a fairness discriminator on imputation errors. FAIM
improves imputation fairness on real-world datasets, and we
show both theoretically and empirically that fairer imputa-
tions lead to improved downstream fairness, specifically in
terms of accuracy parity, when models are trained on fully
observed data. The framework does not require access to the
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protected attribute at inference and supports both numerical
and categorical features.

In future work, we plan to replace the simple MLP Imputer
with more advanced models, such as diffusion-based imput-
ers (Zheng & Charoenphakdee, 2022; Ouyang et al., 2023;
Wen et al., 2024; Zhang et al., 2024), and extend our evalua-
tion to a broader range of real-world datasets.

Impact Statement

This work addresses fairness in data imputation, a critical
yet often overlooked aspect of machine learning pipelines.
Since missing data is prevalent in real-world applications
such as healthcare, education, and criminal justice, dispari-
ties in how imputation methods perform across demographic
groups can propagate or amplify social biases in downstream
decisions. By proposing a fairness-aware imputation frame-
work that does not require access to protected attributes at
inference time, our method aims to mitigate such harms
while respecting privacy constraints. While our approach is
a step toward more equitable machine learning systems, its
deployment should still be accompanied by domain-specific
evaluations and stakeholder input to ensure responsible use.
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A Formal Definitions of Missing Data Mechanisms and Group Fairness Metrics

Let X = (X1,...,X4) € X1 x -+ x Xy be a fully observed d-dimensional random variable representing the input features.
Each data point is associated with a binary sensitive attribute A € {0, 1} and a binary target label Y € {0,1}.

Let X = (X;,...,X,) € X = (X, U{na}) x --- x (X; U{na}) denote the partially observed version of X, where na
indicates a missing value. We define the missingness indicator vector M = (M, ..., M) € {0,1}%, where M; = 1if X;
is observed and M; = 0 otherwise.

A.1 Missing Data Mechanisms
The missingness mechanism is characterized by the conditional distribution P(M | X, A,Y"), and falls into one of the

following categories:

MCAR: Data is said to be missing completely at random (MACR) if the missingness is independent of both the observed
and unobserved data. Formally:
PM | X,A,Y) =PM).

MAR: Data is said to be missing at random (MAR) if the missingness is only dependent on the observed data i.e., where
M; = 1. Let X, be the observed components of X. MAR missingness is formally defined as follows:

PM | X,A,Y)=P(M | Xops, 4,Y),

MNAR: Data is said to be missing not at random (MNAR) if the missingness depends on the unobserved components
Xmis and cannot be explained by the observed data alone.

P(M | X, A,Y) depends on Xy,

A.2 Group Fairness Metrics

We also define the following group fairness metrics, where Y e {0, 1} denotes the predicted label derived from the (possibly
imputed) features:

Demographic Parity (Statistical Parity). This criterion requires the model to produce positive predictions at equal rates
across groups, regardless of the true label. It is formally satisfied when

PY=1|A=0)=PY =1|A=1).

Equalized Odds. This metric requires the model to have both equal true positive rates and equal false positive rates across
groups. It is satisfied if

PY=1|A=0,Y=9)=PY =1|A=1,Y =y), forye{0,1}.

Equal Opportunity. A relaxation of equalized odds, this metric only requires equal true positive rates across groups. It
holds when A A
PY=1|A=0Y=1)=PY =1]A=1Y =1).

Accuracy Parity. This metric requires that the overall prediction accuracy is equal across groups defined by the sensitive
attribute. Formally, it is satisfied when

PY=Y|A=0)=PY =Y |A=1).

B Dataset Information

Adult. The Adult dataset (Dua & Graff, 2019), also known as the Census Income dataset, is a widely used benchmark for
fairness research. It originates from the 1994 U.S. Census and contains demographic and employment-related information
for 48,842 individuals. The binary classification task is to predict whether an individual’s annual income exceeds $50,000
based on 14 attributes, including age, education, occupation, and hours worked per week. In our experiments, we use the
standard processed version of the dataset. The sensitive attribute is gender, with “female” designated as the disadvantaged

group.
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ACSIncome. The ACSIncome dataset is a subset of the Folktables benchmark (Ding et al., 2021), which is derived
from U.S. Census data collected between 20142018 across all 50 states. Specifically, the ACSIncome task (referred to as
“folk-income”) is a binary classification problem aimed at predicting whether an individual’s annual income exceeds $50,000,
based on 10 features, 8 categorical and 2 numerical, including educational attainment, work hours per week, marital status,
and occupation. For our experiments, we use data from the state of Georgia from the year 2018, subsampled to 40,000
instances. The sensitive attribute used for fairness evaluation is race, with “non-White” treated as the disadvantaged group.

Law School. The Law School dataset (Wightman, 1998) was collected by the Law School Admission Council (LSAC)
through a survey conducted in 1991, covering 20,798 applicants from 163 U.S. law schools. Each record includes 11 features
(5 categorical and 6 numerical), such as LSAT scores and undergraduate GPA. The prediction task involves determining
whether a student will pass the bar exam. In our setup, we treat race as the sensitive attribute, with “non-White” designated
as the disadvantaged group for fairness analysis. For generating our synthetic dataset we use LSAT, Decilelb, and family
income as the features. The binary target variable is created using a linear weighting of these features and a threshold.

B.1 Missingness Configurations

Table 2: Missingness configuration for the Adult dataset at 20% and 40% missing rates across different mechanisms. Rare
occupations are defined as those with a population frequency of less than 10%.

Mechanism Missing Column Conditional Column (I) Pr(m = 0 | Lis underprivileged) Pr(m = 0 | Iis privileged)

MCAR Relationship, Marital status, Occu-  N/A 0.2/04 0.2/0.4
pation, Hours per week

MAR Relationship, Marital status, Occu-  sex 0.133/0.266 (female) 0.067 / 0.134 (male)
pation, Hours per week

MNAR Relationship Relationship 0.168 / 0.336 (not married) 0.032/0.067 (married)
Marital status Marital status 0.168 / 0.336 (not married) 0.032/0.067 (married)
Occupation Occupation 0.133/0.266 (rare) 0.067 / 0.134 (common)
Hours per week Hours per week 0.12/0.24 (< 40) 0.08/0.16 (> 40)

Table 3: Missingness configuration for the Folk Income dataset at 20%, 30%, and 40% missing rates across different
mechanisms.

Mechanism Missing Column Conditional Column (/)  Pr(m = 0 | Lis underprivileged) Pr(m = 0 | ILis privileged)

MCAR Hours worked per week, Relation-  N/A 0.2/03/04 02/03/04
ship, Marital status

MAR Hours worked per week, Relation-  race 0.132/0.2/0.267 (non-white) 0.067 /0.1 /0.134 (white)
ship, Marital status

MNAR Hours worked per week Hours worked per week 0.168 /0.25/0.334 (< 40) 0.032/0.05/0.066 ( > 40)
Relationship Relationship 0.168 /0.25 / 0.334 (not married) 0.032/0.05/0.066 (married)
Marital status Marital status 0.168 /0.25 / 0.334 (not married) 0.032/0.05 /7 0.066 (married)

Table 4: Missingness configuration for the synthetic Law School dataset at 20%, 30%, and 40% missing rates across different
missing mechanisms. The LSAT and DecilelB values are normalized.

Mechanism Missing Column (F™) Conditional Column (1) Pr(F™ | Lis dis) Pr(F™ | Lis priv)

MCAR LSAT, DecilelB, Family income N/A 02/03/04 02/03/04

MAR LSAT, DecilelB, Family income race 0.132/0.2/0.267 (non-white) 0.067 /0.1 /0.134 (white)

MNAR LSAT LSAT 0.132/0.2/0.267 (< 0.8) 0.067/0.1/0.134 (> 0.8)
DecilelB DecilelB 0.132/0.2/0.267 (< 0.5) 0.067/0.1/0.134 (> 0.5)
Family income Family income 0.132/0.2/0.267 (< 4) 0.067/0.1/0.134 (> 4)
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C Experimental Setup

Statistical and machine learning-based baselines are implemented using the scikit—learn library. For MissForest,
we use TterativeImputer with a Random Forest regressor. These baselines use default hyperparameters in our
experiments. For MLP Imputer and GAIN, we fix the batch size to 128 and set the hyperparameters « and [ to 5, as this
consistently yielded the best results. We tune the learning rate for the imputation function and the fairness discriminator in
the range [5e~°, 5e ~*] with a step size of 5¢~°, and the number of training iterations in the range [1000, 2000] with a step
size of 500. All experiments are conducted on CPU, categorical features are one-hot encoded, and results are averaged over
10 random train-test splits.

D Theoretical Analysis of Imputation and Downstream Fairness

In this section we provide the proof of Theroem 3.1.

Proof. Let Ejop = ||ho f(X) — Y. Then,

E[Enoy,|S = 1] = E[|[h o f1(X) = Y||[S = 1] (14)
=E[|[ho f1(X) + MX) = h(X) = Y||S = 1] (15)
<E[||ho fi(X) - h(X)|S = 1] + E[|n(X) - Y|||S = 1] (16)
< L-E[[|X — AA(X)[|S = 1] + €+ 1, (17)

where §; = E[||h(X) — Y|||S = 1] ~ o(1). By using the reverse triangular inequality, we obtain:

E[Epop,|S = 1] = E[lho f1(X) = Y[ =1] (18)
=E[[ho fi(X) + h(X) - h(X) = Y[||S = 1] (19)
> E[[ho fi(X) - (X)[[S = 1] - E[A(X) - Y|]|S = 1] (20)
> LE[|IX — AX)IS =1] - e~ a1 1)

By combining (17) and (21), we get:

L-E[|X = (XS =1] =€ = 61 <E[Bnos, |S = 1] < L-E[|X = fi(X)[||S = 1] + € + 1.
Letting §; = E[Ejof, |S = 0] ~ o(1), we can show similar inequalities:

L-E[|X = (XIS = 0] — € = 2 < E[Enos, | = 0] < L-E[|X — f1(X)[||S = 0] + € + 2.
Hence,

[E[Ehof,|S = 0] = E[Ehop, S = 1]] ZL - [E[|X = fu(X)[|[S = 0] = E[[|X — f1(X)[I|S = 1]|
— 2€ — 61 — 52. (22)

By letting 63 = E[E}oy,|S = 1] and 04 = E[Ejop,|S = 0], we can show:

[E[Ehof,|S = 0] = E[Epog,|S = 1| <L - [E[[| X — f2(X)[|[S = 0] — E[[| X — f2(X)|[|S = 1]|
+ 2€ + 03 + d4

1
=L —[E[IX = A(ONS = 0] = B[ X — fA(X)[]lS = 1]]
+ 2€ + 03 + d4. (23)
Using (22) and (23), we can derive:

[E[Ehop, |S = 0] = E[Enop, [S = 1] = a - [E[Enop, |S = 0] — E[Epop,|S = 1]|
—26—51—(52—0[(26+53+54)
= - ‘E[Ehof2|5 = 0] - ]E[Ehof2|S == 1” - O(l) (24)
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E Imputation Fairness Experiment Results

The marker labels represent the v hyperparameter values used to control the trade-off between imputation fairness and
performance, with higher v values leading to improved fairness (lower ARMSE parity), usually with some loss to the
imputation performance.

E.1 MCAR Experiments

E.1.1 ADULT DATASET RESULTS

Adult Dataset with MCAR Missingness (20%)

Fairness-Accuracy (F1 Score)
Trade-off for Categorical Variables

Fairness-RMSE Trade-off
for Numerical Variables
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Figure 5: Imputation fairness improvement for the Adult dataset under MCAR at 20% missingness.

Adult Dataset with MCAR Missingness (40%)
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Trade-off for Categorical Variables

Fairness-RMSE Trade-off
for Numerical Variables
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Figure 6: Imputation fairness improvement for the Adult dataset under MCAR at 40 % missingness.

E.1.2 FOLK INCOME DATASET RESULTS
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Figure 7: Imputation fairness improvement for the Folk Income dataset under MCAR at 20% missingness.
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Figure 8: Imputation fairness improvement for the Folk Income dataset under MCAR at 30% missingness.
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Figure 9: Imputation fairness improvement for the Folk Income dataset under MCAR at 30% missingness.
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E.2 MAR Experiments

E.2.1

ADULT DATASET RESULTS
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Figure 10: Imputation fairness improvement for the Adult dataset under MAR at 20% missingness.
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Figure 11: Imputation fairness improvement for the Adult dataset under MAR at 30% missingness.
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Figure 12: Imputation fairness improvement for the Adult dataset under MAR at 40% missingness.
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E.2.2 FOLK INCOME DATASET RESULTS
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Figure 13: Imputation fairness improvement for the Folk Income dataset under MAR at 20% missingness.
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Figure 14: Imputation fairness improvement for the Folk Income dataset under MAR at 40 % missingness.

E.3 MNAR Experiments
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Adult Dataset with MNAR Missingness (20%)
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Figure 15: Imputation fairness improvement for the Adult dataset under MNAR at 20% missingness.
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Figure 16: Imputation fairness improvement for the Adult dataset under MNAR at 30 % missingness.
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Figure 17: Imputation fairness improvement for the Adult dataset under MNAR at 40 % missingness.
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Figure 18: Imputation fairness improvement for the Folk Income dataset under MNAR at 20% missingness.
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Figure 19: Imputation fairness improvement for the Folk Income dataset under MNAR at 30% missingness.

19



FAIM: Fair Imputation with Adversarial Training for Mitigating Bias in Missing Data

e N
w >
o )

e
)
=]

F1 Score (1)

0.25

FAIM (Ours)

Folk Income Dataset with MNAR Missingness (40%)

Fairness-Accuracy (F1 Score)
Trade-off for Categorical Variables

Fairness-RMSE Trade-off
for Numerical Variables

]

‘.

0.16

RMSE (!)
e
=
w

0.14

0.020 0.025 0.030 0.035 0.040 0.045 0.050

ARMSE Parity ({)

e Mean Group-wise Mean

x  KNN m MICE

0.020 0.025 0.030 0.035 0.040 0.045 0.050

*

ARMSE Parity ({)

MissForest + GAIN

¢ MLPImputer

Figure 20: Imputation fairness improvement for the Folk Income dataset under MNAR at 40 % missingness.

F Downstream Fairness Experiment Results

In this section, we present empirical results on our synthetic dataset derived from the Law School dataset, evaluating all
three missing data mechanisms at 20%, 30%, and 40% missingness levels. As in Section E, the markers are annotated
with the « hyperparameter, which controls the trade-off between imputation performance and fairness. Higher values of v
generally lead to improved imputation fairness and better downstream accuracy parity. We report results using both linear
and non-linear classifiers, specifically logistic regression and random forest.

F.1 MCAR Experiments

Law School-Based Synthetic Dataset with MCAR Missingness (20%)
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Figure 21: Imputation and downstream fairness improvement on the synthetic dataset under MCAR at 20% missingness.
Left: F1 score vs. ARMSE parity. Middle: RMSE vs. ARMSE parity. Right: downstream F1 score vs. accuracy parity for
the logistic regression classifier.
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Law School-Based Synthetic Dataset with MCAR Missingness (20%)
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Figure 22: Imputation and downstream fairness improvement on the synthetic dataset under MCAR at 20% missingness.
Left: F1 score vs. ARMSE parity. Middle: RMSE vs. ARMSE parity. Right: downstream F1 score vs. accuracy parity for
the random forest classifier.

Law School-Based Synthetic Dataset with MCAR Missingness (30%)

Fairness-Accuracy (F1 Score)
Trade-off for Categorical Variables

Fairness-RMSE Trade-off
for Numerical Variables

Downstream Classifier
Fairness-Performance (F1 Score) Trade-off

» + ]
03 , 0.40 _ 0.86 3 F
< +H3 $ f——t N <084
> —Z0.35 P *
£0.2 m 87 8
8 o 5 S 0.82
3 2 0.30 . % @ +
o1 > R i 0.80
0.25 =
0.78
0.0 .
0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20 0.075 0.100 0.125 0.150 0.175 0.200 0.225
ARMSE Parity ({) ARMSE Parity ({) Accuracy Parity ({)
FAIM (Ours) ® Mean Group-wise Mean »x KNN m  MICE e MissForest + SoftImpute 4 GAIN MLPImputer

Figure 23: Imputation and downstream fairness improvement on the synthetic dataset under MCAR at 30% missingness.
Left: F1 score vs. ARMSE parity. Middle: RMSE vs. ARMSE parity. Right: downstream F1 score vs. accuracy parity for
the logistic regression classifier.
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Figure 26: Imputation and downstream fairness improvement on the synthetic dataset under MCAR at 40 % missingness.
Left: F1 score vs. ARMSE parity. Middle: RMSE vs. ARMSE parity. Right: downstream F1 score vs. accuracy parity for
the random forest classifier.
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Law School-Based Synthetic Dataset with MCAR Missingness (30%)
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Figure 24: Imputation and downstream fairness improvement on the synthetic dataset under MCAR at 30% missingness.
Left: F1 score vs. ARMSE parity. Middle: RMSE vs. ARMSE parity. Right: downstream F1 score vs. accuracy parity for

the random forest classifier.
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Figure 25: Imputation and downstream fairness improvement on the synthetic dataset under MCAR at 40 % missingness.
Left: F1 score vs. ARMSE parity. Middle: RMSE vs. ARMSE parity. Right: downstream F1 score vs. accuracy parity for
the logistic regression classifier.
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F.2 MAR Experiments

Law School-Based Synthetic Dataset with MAR Missingness (20%)
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Figure 27: Imputation and downstream fairness improvement on the synthetic dataset under MAR at 20% missingness.
Left: F1 score vs. ARMSE parity. Middle: RMSE vs. ARMSE parity. Right: downstream F1 score vs. accuracy parity for

the logistic regression classifier.
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Figure 28: Imputation and downstream fairness improvement on the synthetic dataset under MAR at 20% missingness.
Left: F1 score vs. ARMSE parity. Middle: RMSE vs. ARMSE parity. Right: downstream F1 score vs. accuracy parity for

the random forest classifier.
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Figure 29: Imputation and downstream fairness improvement on the synthetic dataset under MAR at 30% missingness.
Left: F1 score vs. ARMSE parity. Middle: RMSE vs. ARMSE parity. Right: downstream F1 score vs. accuracy parity for

the logistic regression classifier.
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Law School-Based Synthetic Dataset with MAR Missingness (30%)
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Figure 30: Imputation and downstream fairness improvement on the synthetic dataset under MAR at 30% missingness.
Left: F1 score vs. ARMSE parity. Middle: RMSE vs. ARMSE parity. Right: downstream F1 score vs. accuracy parity for
the random forest classifier.
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Figure 31: Imputation and downstream fairness improvement on the synthetic dataset under MAR at 40 % missingness.
Left: F1 score vs. ARMSE parity. Middle: RMSE vs. ARMSE parity. Right: downstream F1 score vs. accuracy parity for
the logistic regression classifier.

Law School-Based Synthetic Dataset with MAR Missingness (40%)

Fairness-Accuracy (F1 Score)
Trade-off for Categorical Variables

Fairness-RMSE Trade-off
for Numerical Variables

Downstream Classifier
Fairness-Performance (F1 Score) Trade-off

0.4 + 0.875
»
0.850 L]
~0.3 R
< 3 27 1 4 .. -0 Y
5 2 ?§4 2 0.825
50.2 m 3 5 *
8 0.30 2 * 3
3 g . 1 > & $0.800
— ~ [ ] —
0.1 025 = 0.775
0.0 . 0.750 .
0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20
ARMSE Parity ({) ARMSE Parity () Accuracy Parity (! )
FAIM (Ours) e Mean Group-wise Mean % KNN s MICE ® MissForest + SoftImpute ¢ GAIN MLPImputer

Figure 32: Imputation and downstream fairness improvement on the synthetic dataset under MAR at 40 % missingness.
Left: F1 score vs. ARMSE parity. Middle: RMSE vs. ARMSE parity. Right: downstream F1 score vs. accuracy parity for
the random forest classifier.
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F.3 MNAR Experiments
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Figure 33: Imputation and downstream fairness improvement on the synthetic dataset under MNAR at 20% missingness.
Left: F1 score vs. ARMSE parity. Middle: RMSE vs. ARMSE parity. Right: downstream F1 score vs. accuracy parity for
the logistic regression classifier.
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Figure 34: Imputation and downstream fairness improvement on the synthetic dataset under MNAR at 20% missingness.
Left: F1 score vs. ARMSE parity. Middle: RMSE vs. ARMSE parity. Right: downstream F1 score vs. accuracy parity for
the random forest classifier.
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Figure 35: Imputation and downstream fairness improvement on the synthetic dataset under MINAR at 30% missingness.
Left: F1 score vs. ARMSE parity. Middle: RMSE vs. ARMSE parity. Right: downstream F1 score vs. accuracy parity for
the logistic regression classifier.
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Law School-Based Synthetic Dataset with MNAR Missingness (30%)
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Figure 36: Imputation and downstream fairness improvement on the synthetic dataset under MNAR at 30% missingness.
Left: F1 score vs. ARMSE parity. Middle: RMSE vs. ARMSE parity. Right: downstream F1 score vs. accuracy parity for

the random forest classifier.
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Law School-Based Synthetic Dataset with MNAR Missingness (40%)
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Figure 37: Imputation and downstream fairness improvement on the synthetic dataset under MINAR at 40 % missingness.
Left: F1 score vs. ARMSE parity. Middle: RMSE vs. ARMSE parity. Right: downstream F1 score vs. accuracy parity for

the logistic regression classifier.
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Law School-Based Synthetic Dataset with MNAR Missingness (40%)
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Figure 38: Imputation and downstream fairness improvement on the synthetic dataset under MINAR at 40% missingness.
Left: F1 score vs. ARMSE parity. Middle: RMSE vs. ARMSE parity. Right: downstream F1 score vs. accuracy parity for

the random forest classifier.
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